Hybrid Solar-Fossil Fuel Power Generation
نویسندگان
چکیده
In this thesis, a literature review of hybrid solar-fossil fuel power generation is first given with an emphasis on system integration and evaluation. Hybrid systems are defined as those which use solar energy and fuel simultaneously, thus excluding the viable alternative of solar thermal plants which use fossil fuels as backup. The review is divided into three main sections: performance metrics, the different concentrated solar receiver technologies and their operating conditions, and the different hybridization schemes. In addition, a new linear combination metric for analysis of hybrid systems, which considers trade-off of different metrics at the fleet level, is presented. This metric is also compared to alternative metrics from multi-objective optimization. Some previous work only evaluates the hybrid cycle at a certain point in time, which can be misleading as this evaluation would not take into account certain aspects of hybrid cycle such as fluctuating solar supply. Furthermore, almost all previous work designs the hybrid solar-fossil fuel systems for a certain point in time and then evaluates the performance of the system for an entire year. By not taking into account fluctuating solar supply and selling price of electricity in the design of the system, the best possible annual performance of the hybrid cycle may not be reached. Second, an analysis of solar reforming as the integration method for the hybrid cycle is presented, in particular steam reforming of methane. Two solar reforming systems are analyzed: one with a parabolic trough and the other with a solar tower. From the analysis, it is determined that parabolic troughs are not suitable for steam reforming due to the relatively low operating temperatures. The tower reformer system is integrated with a standard combined cycle, and the design and operation of the hybrid cycle is optimized for highest work output for a fixed fuel input and solar collector area (essentially optimizing for maximum cycle efficiency). A heuristic two step procedure is used for the optimization due to the limitation of the optimizer which cannot simultaneously optimize both design and operation. From the optimization, it is determined that the tower reforming integration method is a promising integration option in that this type of hybrid cycle yields high incremental solar efficiencies and also satisfies the linear combination metric for efficiency and CO2 emissions (i.e., the analyzed hybrid cycle has a higher efficiency for a fixed CO 2 emissions compared to
منابع مشابه
Energy and economic comparison of SOFC-GT, MCFC-GT, and SOFC-MCFC-GT hybrid systems
Conversion of fossil fuels to electrical power is the most popular method of electrical power generation. Due to the depletion of fossil fuels and the increase in air pollution, the necessity of using high efficiency power generation systems is increasing. High temperature fuel cells, such as solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC), have high efficiency. According t...
متن کاملUse of Low/Mid-Temperature Solar Heat for Thermochemical Upgrading of Energy, Part I: Application to a Novel Chemically-Recuperated Gas-Turbine Power Generation (SOLRGT) System
This paper is the first part of a study presenting the concept of indirect thermochemical upgrading of low/mid temperature solar heat, and demonstration of its integration into a high efficiency novel hybrid power generation system. The proposed system consists of an intercooled chemically recuperated gas turbine (SOLRGT) cycle, in which the solar thermal energy collected at about 220 C is firs...
متن کاملUsing Floating Photovoltaics, Electrolyser and Fuel Cell to Decrease the Peak Load and Reduce Water Surface Evaporation
Fossil fuel consumption problems and water crisis are serious dangers. Using renewable energy is a solution to reduce fossil fuel consumption. Photovoltaic is a renewable energy generation method which is abundantly used all over the world. By installation of solar panels on the surface of water, the efficiency of panels increases and in addition, the surface evaporation of water will be reduce...
متن کاملFuzzy Logic Mppt Controller with Energy Management System for Solar-wind-battery- Diesel Hybrid Power System
Effective utilization of power is more important than generation of power because power scarcity is the major problem at present in India. It leads many industries to utilize the diesel generator results pollution and demand to fossil fuel. So nowadays many industries and government passions on renewable energy. A wind solar hybrid power system plays a crucial role today in renewable power reso...
متن کامل942 Lior : Advanced Energy Conversion
-This paper reviews some leading novel energy conversion approaches which are aimed at improving power generation efficiency and/or reducing harmful emissions. Some of the concepts used for cycle improvement are higher top temperatures, improved combustion systems, evasion of the Carnot limit by integration with fuel cells and direct nuclear energy conversion to power (the nuclear generator), r...
متن کامل